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Abstract 
This paper preseirts a high perfonnairce ireural- 

network-based system for  testing speakers. A multi-layer 
iJ.euml network system with back-propagation leanring ai- 
gon’thnt is employed. It cons is^ of 53 input nodes, one 
hidden layer with 10 nodes and 1 output node. The nor- 
malized Total Harmonics Dislorlion (THD) values of the 
speakers at diffewirt fr~gueircies are fed to  the input of the 
systenr. The average tmitring tiirre is 40 minutes (on a 
486DS’ 5 0 M H z  PC) for  a training size of 100 patients.  
The neural-network-based s y s t e i ~ ~ .  is able t o  achieve a re- 
markable accumcy of 95%. 

1 Introduction 
Frequently, strict inspection is carried out 011 incoming 

speakers in order to secure excellent quality in the final 
products in Motorola Singapore Pte Ltd. Currently, this 
inspection in performed nimiually by trained operators 
who are skilled at  identifyiiig audio defects. Tlie man- 
iial procedure involves exciting the speaker under test 
with eight t,ones at  different frequencies and recording 
t h  freqtiency rmponsp. Judgement. 011 the speaker’s per- 
forniance is based on listening to the tone produced nnd 
by comparing tlie recorded frequency response with some 
”reference” responses laid down by experienced engineers. 
Listening test allows the operator to assess the distortion 
level whereas compariso~i with the reference curve allows 
evaluation of the speaker’s gain response. 

This manual test procedure is found to  have the fol- 
lowing disadvantages: 

It is a very subjective test a9 the PASS/FAIL crite- 
rion varies from person to person. 

As the operators are required to listen to a large 
number of speakers per day, their fatigue level, emo- 
tioiial stat,e and work stress level do deet the eval- 
uation. 

Usually, a significant amount of ” border-line” case 
speakers will get accumulated at  the end of the week 
by ”unsure” operat.ors. This requires engineers to 
spend a lot. of time to look into tlie issue. 
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Figure 1: Neural-Network-Based System for Testing 
Speakers 

In this paper, a aeu~al-net.work-based system is pro- 
posed to replace the manual procedure. Why neural net- 
work ? The reasons are t.licee fold: first., consistency. 
Due to its good fault tolerance that fncililnlea disturbnncr 
handling, neural net.work is able to provide consistelit. per- 
formance. Second, flexibility. Neural iiet,work involves no 
algorithmic programmiug; it learns and generates its own 
algorithm to solve the problem through training with ex- 
amples. Clianges in different models of t.he speakers and 
PASS/FAIL criterion will not l e d  t.o clianges in the coni- 
plete system; only re-training of the network is needed. 
Third, good noise tolerance. Frequently, due to facility 
constraint, speaker testing is carried out in t,he produc- 
tion floor. Such environment invariably ilit,roduces a no- 
ticeable amount of background noise to the testing pro- 
cess. As a consequence, a good speaker may be rejectetr 
when its frequency response is compared with the refer- 
ence curve. 

2 System Overview 
Tlie block diagram of tlie system is shown in Fignre I .  

The operation of the system is now briefly described. The 
neural-network-based systeni will prompt the aridio anal- 
yser via IEEE488 interface to sweep a tone froni 300 H :  
to 8 ICH: i n  step of 25 H z  to the speaker under test 
via a Class A Power Amplifier. l h e  speakers are tested 
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53 Inpu: Nodes 

Figure 2: Neural Network Configuration 

on frequency responses and Total Harinonic Distortioii 
(THD) up to the 5th harmonic. The frequency response 
provides inforiiiation on the functionality of the speaker 
over human hearing range while the THD provides infor- 
niatioti on the Rub and Buff phenomenon. The speaker's 
response is in turn captured by the iilicroplione located 1 
meter away and fed back to t,he audio anqlyser for post 
processing. The frequency response and THD- data gen- 
erated from the audio analyzer are t.hen sent back to the 
neural-network-based system. 

3 Network Design 
Multi-layer neural network configuration with back- 

propagation learning algoritlini is utilized to implenient 
tlie system for testing speakers. This network contains 53 
input nodes, 1 hidden layer with 10 nodes aud 1 output 
node. Tlie input pattern is the norinalized THD response. 
The speaker's response is sampled 53 times within the au- 
dio frequency range of 400Hz to 8 k H r .  Each normalized 
THD value at  its sampled frequency is fed as input to 
the neural network. The output node is responsible for 
indicating whether the speaker is good or bad. The final 
neural network configuration is shown in Figure 2. 

3.1 Initial Network Design 
The roles of the hidden layer and the effects of hidden 

nodes are particularly iniportant because of their sub- 
stantial impacts on the network's ability to learn. The 
hidden layer undert,akes the non-linear iiiapping between 
the input pattern and the output. hlany researchers have 
found that a single layer perceptron cannot represent ar- 
bitrary functions. To increase the network ability to learn 
complicated problem, one or niore hidden layers are often 
necessary. However, simulation studies show that for our 
application, no sigiiifkant improvement is obtained by 
increasing the nuniber of hidden layers froni 1 to 2. On 

the contrary, the training time incremes exponent.ially. 
Hence, the network has only one hidden layer. An im- 
mediate question is how riiany nodes are required for the 
hidden layer ? Using the grtitleline of (I] whirli states 
that a good number of hidden iiotles to start with can 
be obtained by taking the square root of the nuniber of 
input nodes plus output nodes and adding a few niore. 
the number of nodes in the hidden layer was set to 15. 

3.2 Evaluation of Network Performance 
The network performance is evaluatecl by the percent.- 

age correct. Percentage correct indicates the accuracy of 
the network in correctly identifying good and bad speak- 
ers. In general, this accuracy is closely linked to the 
degree of generalization t.he network has achieved after 
training. Good generalization nieans that the network 
has adequately explored and learnt the vital c1iaract.eri.s- 
t.ics of both good and bad speakers during t.raiuing. This 
generalized speaker's char~cteristic is ttsetl 1.0 compare the 
response of the speaker during actual t.est.iiig. Therefore, 
good generalization is a pre-requisite for good accuracy. 
Basically, the degree of generalization of t.he neural net.- 
work can be found by testing the net.work using sonic 
known patterns and recortling it.s percentage correct. I n  
this paper, there are a t.ot.al of lG0 know speaker's re- 
sponses which have already been iiiaiiually cla4lietl int.0 
good and  bad^ Out of these ICiU kuown pat.terns, LOO were 
used to train the network antl t.he remainiiig 80 were re- 
served for testing the network for pereelitage correct.. 

The procedure for checking tlie net,rvork's percent,age 
correct is outlined in Figure 3. 

3.3 Fine Tuning of Network 
Fine tuning of the nebwork is necessary iii order t.0 

achieve the best comproiiuse between accuracy antl traiit- 
ing speed t.hrough the adjustment. of hit1de11 layer size. 
The network may niemorize a solut.ioii for each iiitliviclrial 
partern in the training set raClier t,lian esbract.iiig a inore 
general solut~ion. On t.lie o t h r  hantl. insitfficipiit. Iiitl~leti 
nodes will result in insuflicient. learning. Therefore. fine 
t.uning the hidden layer is necessary t.0 arrive at a traile- 
off for the nuniber of nodes in  the Iiicl4en layer. l h e  trial 
and error procedure shown iii Figure 4 is atlopt.ec1. 

Tlie network perforniance is awe.ssed based on it.s per- 
cent,age correct on GO t.est. pat.terns which are unknown 
to the network. The percentage correct with 1,5,1U.15 
and 20 hidden nodes are experimented antl t.he resri1t.s 
are suniniarized in Figure 5. It is clear froni Figure 5 
that the hidden layer size niarkedly affect.s the network's 
ability of processing the inforiiiation correct.ly. 

Another factor which must be taken into consideration 
on deciding the 'optimum' hidden layer size is the training 
time needed. The variation of the training time with 
respect to the nuniber of nodes in the hidden layer is 
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Figure 4: Trial and Error Procedure for Determining Iiid- 
den Layer Size 

suniniarized in Figure 6. From Figure 6 ,  we see that 
the training time increases exponentially with increases 
in the hiddeu layer size. This is because 85 the nuniber of 
hidden nodes increases, the number of connection weights 
that needs to be trained also grows exponentially. From 
Figures 5 and 6, it is decided that the nuniber of nodes 
in the hidden layer should be 10. 

4 Network Training 
The network was trained repeatedly until the desired 

error level WM achieved. The sum squared error criterion 
is adopted. The sum squared error indicates how well 

loo T 

Figure 3: Procedure ford3iecking Percentage Correct 
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Figure 5: Fklationship Between Percentage Correct and 
Hidden Layer Size 
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Figure 7: Major Steps in Network aaining 
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i training process is to drive the suni squared error to th 
desired value over all training patterns. 
As implied in the niajor steps for network trainin 

shown in Figure 5 ,  there are a few variables that affect th 
network’s error convergence rate during training. These 
factors are: network structure, size of training set, learn- 
ing rate and momentum. As mentioned in Section 3. 
network structure affects the training time exponentially. 
A neural network with larger hidden layer needs longer 
training time. However, as shown in the previous section. 
the network’s size has already been fine tuned to achieve 
the best accuracy possible. Thus, it is not considered 
here. 

The size of training set is another factor that affects 
the training speed in an exponential manner. Smaller 
training set requires shorter training time. However, it is 
not feasible to reduce training time by reducing the size 
of the training set. This is because sniall training set will 
limit the degree of generalization the network can achieve 
during training, resulting in lower accuracy a9 discussed 
in the previous section. 

In general, learning rate does not affect. the network 
performance in ternis of correct clmificat.ion. It merely 
affects tlie network convergence rate during training and 
hence the training time required. (The trainiug time is 
inversely proportional to the learning rate.) From the 
weight adjustment equation used in the back-propagation 
algorithm, we,can see that the learning rate is directly re- 
lated to the amount of error correction, hence the aiiioiiut 
of weight. adjustment.. Figure 8 shows the error curves 
wit.11 0.3 aid 0.8 learning rate. Note t.he reduction in 
training time as the learning rate increases from 0.3 to 0.8. 
However, when the learning rate gets too Inrge (greater 
than 0.9). the trnining process becomes uiistable. Os- 
cillations of suni squared error coninience and generally 
convergence to the required error toleraiice is not possi- 
ble. This is due to the larger weights correction required 
which in turn causes the resultant weig1it.s to oscillate 
about the desired value. In the event that convergence is 
possible, the larger learning rate will cause the error to 
drop steeply to the desired sun1 squared error. Figure 8 
illustrates such oscillatory error curve when the learning 
rate is 2. 

In addition to the learning rate, mol-ientuni is another 
fact.or used by the training algorithm to modify the net- 
work’s weights. Froni the weight adjustment. mechanism. 
we see t.liat. monientum allows a fraction of the previous 
weight. change to be added to the current weight change. 
This niechanism prevents the network from being stuck at 
t.he shallow niininial of the error surface. When t.he nic- 
mentum factor is zero, the weight change is based solely 
on the gradient. descent direction. From Figure 9, we 
can see that without such nionient.um push, the net.work 
will sonietinies fall into a local minimal. As tlie nionien- 
tuni increases, the network is able to pull itself out of 
any local nuninial. From the error trajectories shown in 

! 
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Figure 8: Suni Squared Error versus Nuniber of Iterations 
for Different Leariiiiig Rates 
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Figure 9: Sum Squared Error versus Nuniber of Iterations 
for Different Monieiituni 

Figure 10: Iterative Process for Determilling the Best Pair 
of Learning Rate and Monientum 

Figure 9, we c a i  also see that the number of iteratioils re- 
duces as nionientuni increases froni 0.3 to 0.9. However. 
for larger value of nionientuiii, numerical overflow occurs 
during training. 

From the previous study, it car1 be coiicluded that 
learning rate arid momentum are the two factors that. 
can be adjusted to achieve faster training without $Tect- 
ing the network's accuracy. In sunimary. by increasing 
tlie learniiig rate and tlie iiioiiieiituni to below a certain 
h u t ,  we will be able to get shorter trainiiig t h e .  

To our knowledge, there is no ruialytical nielliocl to tle- 
terrnine tlic 'optinial' learniiig rate nird iiioiiiriil i~ni. To 
line tune the leartkg rate arid ~ I O I I I ~ I I ~ A I I I I  for fwt hail)- 
iiig yet securing convergence, trial nrd error procedw is 
adopted. The iterative process for training tlie network 
for the target error tolernnce of 0.001 wit*li 100 trilling 
data is shown in Figure 10. 

It is observed that any coiiibiiiation with learning rate 
greater than 0.9 or with nionientuni greater t.limi 0.8. the 
network inay not converge to the required error tolerance. 
Furtherniore, any coinbination with leariling rate lower 
than 0.4 requires a longer trainiiig time and in the ex- 
treme case, the network cannot converge with zero Iearn- 
ing rate. Similarly, with nmnientuni snialler h i 1  0.4, 
the learning is slow. Therefore, the best combinat ion of 
learning rate and nionientuni to t.riii the network falls 
in the range of 0.4 to 0.8 and 0.5 to 0.8 for learning rat.e 
and nionieiituiii respectively. The unsliadetl portions of 
Table 1 indicate, the desired range. 

Having obtained all the optinial training paranieters, 
the network is trained for a target sum squared error tol- 
ernnce of 0.001. Table 2 suniniarizes all Llie paranieters 
of the network used. The error trnjectory of the tmiiiiiig 
proceas is sliown in Figure 11. 
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Number of Input Nodes 
Number of Hidden Nodes 
Number of Output Nodes 
Leaming Algorithm 

LeamingRate 
Momentum 

Table I: Niatiiber of Iterations for Different Values of 
Learning Rate ancl Motiietitutii 

53 
IO 
I 

Back-propagation 
0.5 

0.7 
Size of Training Set 100 

Number of Iterations 

Talde 2: Final Network Settitigs 

2500 

7 ------r-- ----'-I - -. 
T.rp.t0*""S. 0.001 

im ImO 

Ibralinr 

Error Trajectory for the Final Network Sd.l.iitgs 

5 Network Performance 
Having trained the network with the opt~ittinl trainiitg 

parameters obtained in the previous section, the overall 
perforiiiaiice of the neural network-bnsed system is eval- 
uated based on percentage correct and iioise tolersnc,.. 
It turns out that the network produces a remarkable ac- 
curacy of 95%. Sixty kiiowii speakers wliicli have been 
classified into good and bad manually were etiiployed in 
this evaluation. Their THD responses were captured and 
fed to the network one at a time. Out of these BO speak- 
ers. 57 of them were correctly identified by t.he proposed 
system. 

6 Conclusions 
111 this paper, a high perfortilance neitral nebwork- 

based speakers testing system has been successfully de- 
signed and implementecl. A multi-layer neural network 
system with back-propagation learning algorithm is ent- 
ployed. The network cotisist,s of 53 input. nodes, a hitltlen 
layer with 10 tiocles atid an out,put. node. The sysbeni 
requires at1 average training time of 40 minutes (on a 
486DX 5 0 M H z  PC) for a training size of 100 patt,erns. 
The system is able t.o achieve a reiiiarkable 98%. accuracy. 
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